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Received 20 April 1990 

Abstract. We discuss guided phonon propagation in extremely narrow wires with position 
modulated radius and free boundaries. The modulated radius represents a randomly rough 
surface associated with the fabrication of small wires. A coordinate transform technique is 
used to introduce the surface roughness into the vector differential equation for an elastically 
isotropic medium. By solving the secular equation numerically we have been able to det- 
ermine the dependence of the phonon mean free path on wave vector, roughness amplitude 
and correlation length. 

1. Introduction 

Low iemperatuie transport studies of free-standing wires have been of interest as a 
candidate for the observation of quasi-one-dimensional phonon transport. Jackle [ 11 
considered the thermal properties of such samples by extending the model for electron 
localization [2] to the case for phonons. It was predicted that the phonon localization 
length would be proportional to the cross-sectional area of the wire and to the inverse 
squared phonon frequency. Kelly [3] considered the low temperature properties of 
narrow, self-supporting wires. At  temperatures for which the dominant phonon wave- 
length is of the order of the lateral dimensions of the wire, it was assumed that the wire 
behaved as a phonon wave guide and that the mean free path (MFP) was determined by 
length scales associated with the correlation length of surface roughness. With this model 
Kelly predicted that the MFP should be large compared to the lateral dimensions of the 
wire. As a consequence of the relatively long MFP it was expected that phonons would 
be very efficient at removing heat from a narrow wire. 

Following this theoretical work, several attempts have been made to determine 
experimentally the phonon MFP in narrow wires [4,5,6]. In all cases the inferred MFP 
was much less than predicted. In an attempt to understand the discrepancy between the 
physically appealing wave guide model and the experimental data, we have performed 
a more complete analysis of the problem. Our results show how the model of Kelly [3] 
and the various experimental data may be reconciled. 

In the elastic continuum limit, wire structures with free-boundaries have been shown 
to have many dispersion branches close to the zone-centre [7]. These branches arise 
from spatial quantization of the phonon spectrum and depend on the geometry of the 
wire. The fact that the free-surface determines the nature of the dispersion branches 
suggests that the surface irregularities will play an important role in phonon transport. 
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In this paper we determine the MFP of phonons in wires with random surface rough- 
ness. We adopt a method introduced to study the phonon spectra in similar structures 
[8] and we restrict our calculations to several of the lower dispersion branches. 

2. Model 

The displacement vector U for wave propagation in elastically isotropic media satisfies 
the wave equation: 

S 2 u / S t 2  = c ;V2u  + (c: - c : )  grad div U (1) 

where c, and c, are the transverse and longitudinal velocities of sound. We have intro- 
duced surface roughness of a cylindrical wire by a modulation of the radius, R = 
R ( l  + xf(z)), where R is the wire radius and x = A / R  where A is the amplitude of 
roughness andf(z) is the functional form of the surface profile. We solved equation (1) 
in cylindrical coordinates by looking for solutions of the form 

u(r,  8, z )  = 9 ( r ,  2) eiqz eime elror (2) 
where the radial part of the wave function, R(r, z ) ,  incorporates the effect of the surface 
roughness. The coupling between the rand  z components makes it impossible to solve 
equation ( 1 )  using a separation of variables technique. 

To overcome this problem we have adopted the following coordinate transformation: 
h = r(1 + xf(z)), z = z and 8 = 8. We now can eliminate the derivatives with respect 
to z for each vector component of 9l using the relation: 

where Z = (6f(z)/6z)(l + X f ( z ) ) - l  and so is a function of z only. The wave functions 
were then determined as power series by decoupling the longitudinal and the transverse 
components into U = U ,  + U ,  and using equation (3) to solve equation (1). 

Restricting ourselves to the case for m = 0 and dropping the elUf term, the two 
components of the wavefunction have the form: 

u , ( ~ )  = B 

c. 
0 1: c. (% + iyb,) 
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where a,, b, and c, are given by the recursion relations 

where 

a* = W’/c: - q2 p2 = W’/Cf - q 2  

and the primes denote the differential with respect to z .  
The solutions to the equations of motion have to satisfy the boundary condition that 

the surface of the wire be stress-free. This requires the normal components of the stress 
tensor T!, to vanish on the surface: that is, T, = 7: e = T, , = 0 at, = R. The transformed 
stress tensor components XI are given by, 

and the relevant stress tensor components are given by 

6b, a2b ,  
T,, = E[ B(c: - 2125) (8v2P2 - 2vP2 - q2)b, + 2iq - + F ) ( f i r ) 2 u  

U i 6.2 6z  

+ C2c:a(4v2 + 4u + 1) iqc, + - ( a r )2u+1  eiqz i 1 
B 2cfp(2v + l)(> 6b + iqbu)(Pr)2’. 

62 

- A  2c:a2(4u2 - 4v)a,(ar)*” + C2c:a2v iqc, + - (w)*’+‘ e’q2 i 1 
where A ,  B ,  C are constants. In the limit of small roughness amplitude we now expand 
the stress tensor components in powers of x. 

The phonon dispersion for different surface profile functions can be determined by 
equating the determinant of these stress tensor elements to zero. In this paper we are 
interested in random surface roughness. Thus we replace the specific surface profile 
functionxf(2) by a statistical ensemble of profile functions with the following properties. 
For brevity we drop the z dependence off ( 2 )  in the remainder of the paper. First, the 
average of the profile function (xf) is zero, second, the mean square of the profile 
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function is given by ( ( x f ) 2 )  = x2, third, the averages of all derivativesvanish, and fourth, 
the mean square of the nth derivative is given by 

((d"(xf) ldz")2)  = 

where is the correlation length of the roughness. 
Using the properties mentioned above we can calculate the average coefficients (q,), 

(b,) ,  and (c,) and then use these to obtain the average stress tensor elements on the 
surface ( T t  ), Li = 4 ,  6 ,  z ;  k = a, b ,  c. The coefficients are given by 

6 u 4  - 8u3 - 8u2  - 1 2 ~  
a* 

U a 3 
3u6  + 16u5 + 4u4 - 17u3 - 1 0 4 ~ ~  + 2 4 ~  - 180 + 6 q2  

+ ( 3 v 4  + 8u3  - 1 0 v  - 

(3v4  + 8u3  - 1 0 ~  - 90)(u2 + ~ U ) U  

3u4 + 8u3  - 10u - 90 
6 

+ 

((b,) has the same form as (a,) but with a replaced by p)  and 

6 u 4  + 8u3  - 8 u 2  - 12v 

U (U + 1 ) ! 2  3 
3 u 4  + 8 u 3  - 1 0 ~  - 90 

6 

( C " )  = (4)" 

3 u 4  + 8 ~ '  - 1 0 ~  - 90 ( f ' 1 2 ) ] ]  
6 a4 . 

- 

Since the average of the surface profile function iszero, the lowest order of expansion 
of ( T o  is second order in x. The boundary conditions require (TO) to be zero on the 
surface, and so the phonon spectrum can be obtained by solving the secular equation 
det P = 0, where the elements of P are given by Pfk = (TO.  This determinant can only 
be solved numerically. To obtain the phonon MFP we have to look for solutions of the 
form 

U = s ( r ,  z ;  q ,  U) e l m r  e142 e-211 = s ( r ,  2 ;  q ,  w) e l (q1+142)2  

i.e. we search for solutions of w versus (4, + iq2). To avoid an elaborate search for zeros 
in the complex q-plane we adapted the following iteration procedure. q l ( w )  is given by 
the known dispersion curve of a perfectly cylindrical wire [7] and substituted into 
the secular equation, which subsequently has been solved for q2(0 ) .  Since we only 
considered the zeroth-order terms of q we are not able to determine the dependency 
of the MFP on the roughness amplitude x in this approximation. We now find the lowest 
order correction to ql( w )  by solving the secular equation for ql (  w) utilizing the calculated 
values of q2(w)  and then using this corrected curve of q l ( w )  to solve for q2(w) .  After 
repeating this procedure several times the values of q and q2 converge towards the exact 
solution. We found that only few iterations were necessary to obtain a solution that is 
exact to one part in lo3. 
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Figure 1. Phonon dispersion of a cylindrical wire 
without surface roughness. p and E are density 
and Young's modulus respectively. The velocity 
of sound ratio has been taken to be c,/c, = 2 

5 
C/R 

Figure 3. Dependence of the minimum value of 
the phonon MFP on the roughness correlation 
length E ,  shown for several roughness amplitudes. 
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Figure 2. Dependence of the phonon MFP on the 
wave vector. The roughness correlation length 
has been taken to be E = 5R. 

qR 

Figure 4. The scaled diffusion constant as a func- 
tion of 4R. 

3. Results and discussion 

Setting the roughness amplitude tozero,x = 0, we have calculated the phonon dispersion 
in a narrow wire, figure 1. This is in agreement with previously published data [7]. Using 
the usual definition of the MFP as the length over which the wave amplitude falls to l / e  
of the initial amplitude, we have calculated the MFP for the lowest dispersion branch that 
does not emanate from the origin. We find the MFP to be proportional to x - l I 2  for x 
between 0 and 0.3. In figure 2 we show the scaled MFP I(x)'/*/R as a function of qR. We 
find the MFP has a range of qR over which it is almost constant. Using different values of 
f ,  we have determined that for the wave vectors 0.55-l < q < 2nf-' the MFP is almost 
constant. Outside this range the phonon wavelength becomes either greater than or less 
than the length scale associated with the surface roughness so, as expected, the phonons 
experience less interaction with the roughness and the MFP increases. For q < 0.5g-' ,  
we find the MFP to be proportional to q -2  while for q > 2 n f - I  the dependence follows a 
q4 law. We note that in practice the long MFP for short wavelength phonons will be 
reduced by other scattering processes whose scattering cross section increase with wave 
vector, such as mass defect scattering. 

The variation of the minimum value of the MFP as a function of the correlation length 
and amplitude of roughness is shown in figure 3. The MFP is found to vary as - E l l 2 ,  and 
the dependence on the amplitude x is -x-'I2. 
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The ability of phonons to transport energy is described by the diffusion constant, 
D ( q )  = u,(q)l(q). For small wave vectors, the phonon dispersion in branches that do 
not emanate from the origin can be expanded in terms of q:  w = w, + yq2 ,  where w, is 
the frequency at the zone centre of the nth branch. From this expansion we can calculate 
the group velocity ug(w) = 2yq ,  and so estimate the diffusion constant for phonons in a 
particular branch. Figure 4 shows the scaled diffusion constant (D/R>(px/E)”* as a 
function of qR for the first branch. Close to the zone centre the diffusion constant is 
dominated by the low group velocity, thus the long MFP of the phonons is ineffective in 
transport. At  larger values of qR, where the MFP increases, the MFP dominates the 
diffusion constant suggesting that higher wave vector phonons become more efficient 
at energy transport. As we mentioned previously, however, other phonon scattering 
mechanisms will act to reduce the MFP in this region. 

We now compare our present results to previous work. For phonons with q -e l / g ,  
E = 10R, and a mass fluctuation of 5%,  corresponding to x = 2.5%, Kelly [3] predicted 
the phonon MFP would be -4000R. This is consistent with the present analysis in which 
we find a comparably large MFP for phonons of wavelengths 22000R. For wave lengths 
comparable to the roughness correlation length, phonon scattering by the surface rough- 
ness leads to a much shorter MFP. To compare our analysis with experiment we consider 
a wire of R = 25 nni having = 10 nm and x = 2%. At a lattice temperature of 1 K the 
dominant phonon wavelength is -100 nm. qR - 1.2 and we find the MFP to be 300 nm; 
two orders of magnitude lower than anticipated previously and consistent with the 
available data. 

4. Conclusion 

We have calculated the wave vector dependence of the phonon MFP in narrow wires with 
randomly rough edges. Over a range of wave vectors, determined by the correlation 
length of the roughness, the MFP is almost constant and has a lower value than earlier 
calculations suggested. We have determined the variation of the phonon MFP as a 
function of the amplitude and correlation length of the roughness and have shown that 
scattering by surface asperities provides a mechanism for reducing the MFP in small wires. 
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